

Osort Tutorial

Automatic spike detection
and sorting

Ueli Rutishauser
California Institute of Technology

<urut@caltech.edu>

Spike sorting

● Steps in spike sorting:

(1) Read raw data

(2) Detect spikes, extract their raw waveform (detection)

(3) Find the peak of the waveform, align (alignment)

(4) Determine to which cluster the spike belongs (sorting)

OSort

● Osort is an implementation of a template based, unsupervised
online spike sorting algorithm.

● Online: sorting is done spike-by-spike. As soon as a spike is
detected,it is sorted. Thus, this algorithm can be used for
realtime processing of data.

● Unsupervised: The algorithm and its implementation can be run
automatically on large data sets. Figures (png) of all clusters
are automatically created for later visual inspection.

● Supervised: After the algorithm finishes, human operator needs
to decide which clusters are valid, which are artifical splits (need
to be merged), which are SUA/MUA.

Supported methods

● Appart from the core sorting algorithm (our own), Osort
implements several other methods for spike detection and
alignment (see references for details).

● Detection:

energy threshold: based on a local energy signal, similar to a
TEO operator (teager energy operator)

CDW: spike detection based on a discreet wavelet
decomposition

● Alignment:

MTEO alignment: multiscale teager energy operator

Supported raw data

● Neuralynx binary files (Ncs). Both Analog Cheetah and Digital
Cheetah Variants. Sampling rates are fixed: 25000 Hz (Analog
Cheetah Files) and 32556 (Digital Cheetah).

● Text files. Variable sampling rate, but > 20kHz is recommended.
Text files are slow for large data amounts.

● Other formats can be incorporated easily:
i) convert them to Ncs (freely available matlab functions for
writing Ncs files are available).

ii) modify the code to directly read your format. Modify the
functions getRawData.m / getRawTimestamps.m

iii) convert to textfile (see readme.txt for format description).

The Graphical User Interface - Overview

Spike
detection

Paths &
File Formats

Which Figures
to produce

Peak
alignment

(see the readme.txt file for a description of each field & suggested default values).

Step-by-Step: 1) plot raw data for inspection (GUI)

Produce a figure illustrating the spike extraction process of channel 18, second block (of 20s). Detecting spikes using
wavelet with 0.2 as threshold, 0.2-1 as scales and the bior1.5 wavelet. These parameters are used even if “execute
spike detection” is disabled. Enable/disable the option to set the parameters if you only want to produce the plot and
not extract spikes of the entire data file.

Step-by-Step: 1) plot raw data for inspection (result)

Raw signal

Bandpass
filtered

Energy

Extracted
spikes

Step-by-Step: 2) detect spikes & sort (GUI)

Min nr clusters: clusters which have less than this number of spikes are considered “noise”.
Lower if you have very sparsely firing neurons!

Step-by-Step: 2) detect spikes & figures of clusters (results)

Plot illustrating one particular cluster. Left column: raw waveforms, variance at each point,
ISI (zoomed). Right column: powerspectrum, autocorrelation, ISI (0-700ms).

Step-by-Step: 3) projection test figures (GUI)

Step-by-Step: 3) projection test figures (result)

Example: how to process text file

Note on automation

● Many files can be processed in a sequence: enter any number
of channel numbers in “channels to process”

● Everything can be done in one go (select spike detection,
sorting, make figures, make projection test) or selectively. Each
of these steps can be executed independently,but some will
only run if previous steps have been run already (i.e. Running
sorting before spike detection won't work; if multiple options are
selected,the order is automatically correct).

● Raw figures for several blocks can be generated: enter a list of
block numbers in the “Block nr(s) for figs” field.

Filestructure and content
● Three main directories:

raw
figures (“figs” in the following)
data output (“sort” in the following)

● For each extraction threshold (field “extraction threshold”) Osort
will create a subdirectory in figs and sort. Files will be stored in
there. This is so that different thresholds/detection methods can
be tried easily.

● For each channel & threshold, spike detection creates a file
“Ax_sorted_new.mat”. This file contains the spike waveforms
(variable: newSpikesNegative) the cluster number they are
assigned to (variable: assignedNegative).

● There are two more GUIs: the merge GUI and the define usable
cluster GUI. They are not covered here, but can be used to
further (manually) refine the sorting (merge GUI) and to define
what result should be used and the rest is assigned to noise.

References & Resources
● The spike sorting itself as well as the findPeak method of alignment:

Rutishauser, U., E.M. Schuman, A.N. Mamelak (2006). "Online detection and sorting of
extracellularly recorded action potentials in human medial temporal lobe recordings, in
vivo." J Neurosci Methods 154(1-2): 204-24.

● The wavelet based spiked detection method is described in:

Nenadic, Z. and J. W. Burdick (2005). "Spike detection using the continuous wavelet
transform." IEEE Transactions on Biomedical Engineering 52(1): 74-87

● The MTEO peak finding method:

Choi, J. H., H. K. Jung, et al. (2006). "A new action potential detector using the MTEO
and its effects on spike sorting systems at low signal-to-noise ratios."
IEEE Transactions on Biomedical Engineering 53(4): 738-746.

● For an example of real data sorted using our method:

Rutishauser, U., A.N. Mamelak, E.M. Schuman (2006). "Single-trial learning of novel
stimuli by individual neurons of the human hippocampus-amygdala complex."
Neuron 49(6): 805-13.

Copyright

We make this source code freely available in the spirit of academic
freedom and reproducability of research. However, it comes with no
warranties whatsoever. Use at your own risk. Backup your data
before you use it with this software. We can't guarantee support. You
are welcome to modify the code, but please send us updates if you fix a
bug
or add a useful feature. We might integrate it into the distribution.

OSort was initially written by Ueli Rutishauser (Caltech); The GUI was
written by Matthew McKinely (MIT). All the code in 'code/3rdParty' was
written by others and is included for convenience.

Copyright (c) by Ueli Rutishauser and the California Institute of
Technology. This Research was conducted in collaboration with E.M.
Schuman and A.N. Mamelak and funded by the Gimbel Discovery Fund
as well as the Howard Hughes Medical Institute, through the laboratory
of E.M. Schuman at Caltech.

